# UF Carbon Resources Science Center: Introduction and Opportunities



Timothy A. Martin, Director Carbon Resources Science Center

#### Context



### U.S. GHG Emissions and Agricultural / Forestry GHG Balance



Forests offset 11-16% of U.S. GHG emissions Agriculture is a net GHG source

U.S. EPA 2005

### Opportunities for Forestry and Agricultural Mitigation of Atmospheric CO<sub>2</sub> – U.S.



### Opportunities for Forestry and Agricultural Mitigation of Atmospheric CO<sub>2</sub> - Florida



#### UF Carbon Science Expertise

- Natural resource and agricultural management
- Plant sciences
- Ecology
- Biogeochemistry
- Remote sensing
- Engineering
- Economics
- Policy
- Social sciences

#### **CRSC** Mission

- Bring UF carbon science experts together to work synergistically on common problems
- Leverage new sources of research funding
- Serve as an objective, well-regarded source of rigorous information on carbon resources science for stakeholders

#### Focus Areas

- Develop optimum forest management regimes for sequestering carbon;
- Discover technologies for decreasing carbon emissions from agricultural production systems;
- Advance agricultural and forest management systems to produce carbon-neutral biofuels to substitute for fossil fuels;
- Create efficient methodologies for cost effective implementation of cap-and-trade systems;
- Conduct life-cycle analyses with full-cost accounting of alternative policies, incentives and management regimes; and
- Address critical shortage of US scientists through graduate education.

#### Approach

- Directed, high impact internal research projects
- Formal and informal meetings among Centeraffiliated faculty
- Support for Center-affiliated faculty activities and grantsmanship
- Periodic newsletters
- Website
- Extension activities coordinated with an alreadyestablished Extension focus group

#### http://carboncenter.ifas.ufl.edu



#### **CRSC Seminar Schedule**

All seminars will be held on Fridays 3 - 4 pm in room 112 Newins-Ziegler Hall. Refreshments begin at 2:45 pm. *The location for the keynote address on February* 6 *will be announced soon.* 

| Date           | Speaker                   | Affiliation                                        | Title                                                                           |
|----------------|---------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|
| January 9th    | Dr. Tim Martin            | UF - SFRC                                          | UF Carbon Resources Science<br>Center: Introduction and Opportunities           |
| January 23rd   | Dr. Sabine<br>Grunwald    | UF - Soil and Water<br>Science                     | Geospatial Tracking of Soil Carbon                                              |
| February 6th - | Dr. Roger<br>Sedjo        | Resources for the<br>Future, Washington,<br>D.C.   | Keynote: The Role of Forests in<br>Climate Change and in Possible<br>Mitigation |
| February 20th  | Dr. Jim Jones             | UF - Agricultural and<br>Biological<br>Engineering | From Climate Projects to an<br>Interdisciplinary Florida Climate<br>Institute   |
| March 6th      | Dr. Nick<br>Comerford     | UF/NFREC - Soil and<br>Water Science               | How is C Sequestered in Florida Soils and Is There a Role for Charcoal?         |
| March 27th     | Dr. Francisco<br>Escobedo | UF - SFRC                                          | Urban Forests and Carbon: Mitigation<br>Tool or Public Relations Strategy?      |
| April 10th     | Dr. Leda<br>Kobziar       | UF - SFRC                                          | Fire and Climate Change: Facts,<br>Predictions, and Stumpers                    |



#### **CRSC Seminar Schedule**

All seminars will be held on Fridays 3 - 4 pm in room 112 Newins-Ziegler Hall. Refreshments begin at 2:45 pm. The location for the keynote address on February 6 will be announced soon.

|  | Date                           | Speaker                   | Affiliation                                      | Title                                                                           |
|--|--------------------------------|---------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
|  | January 9th                    | Dr. Tim Martin            | UF - SFRC                                        | UF Carbon Resources Science<br>Center: Introduction and Opportunities           |
|  | January 23rd                   | Dr. Sabine<br>Grunwald    | UF - Soil and Water<br>Science                   | Geospatial Tracking of Soil Carbon                                              |
|  | February 6th -<br>location TBD | Dr. Roger<br>Sedjo        | Resources for the<br>Future, Washington,<br>D.C. | Keynote: The Role of Forests in<br>Climate Change and in Possible<br>Mitigation |
|  |                                |                           | LIF - Agricultural and                           | From Climate Projects to an                                                     |
|  | February 20th                  | Dr. Jim Jones             | Biological<br>Engineering                        | Interdisciplinary Florida Climate<br>Institute                                  |
|  | March 6th                      | Dr. Nick<br>Comerford     | UF/NFREC - Soil and<br>Water Science             | How is C Sequestered in Florida Soils and Is There a Role for Charcoal?         |
|  | March 27th                     | Dr. Francisco<br>Escobedo | UF - SFRC                                        | Urban Forests and Carbon: Mitigation<br>Tool or Public Relations Strategy?      |
|  | April 10th                     | Dr. Leda<br>Kobziar       | UF - SFRC                                        | Fire and Climate Change: Facts,<br>Predictions, and Stumpers                    |

Seminar

Faculty Roundtable

Facilitated Visioning Process

#### Simulation of Pine Plantation Carbon Dynamics Under Contrasting Silvicultural Scenarios

Timothy A. Martin
Wendell P. Cropper, Jr.
School of Forest Resources and Conservation
University of Florida

## Forest Store LOTS of CO<sub>2</sub> just through growth (*in situ*)



#### ex situ forest carbon sequestration

- Storage in wood products paper, lumber, furniture
- Storage in landfills
- Substitution for other, carbon-emitting products like steel or concrete
- Substituting for fossil fuels

#### Biological Carbon Balance



### In Situ + Ex Situ Forest Carbon Balance



## Forestry Carbon Emission Mitigation Strategies

- Increase forested land area through reforestation or afforestation
- Increase carbon density of existing forests at both stand and landscape scales
- Expand the use of forest products that sustainably replace fossil fuel CO<sub>2</sub> emissions
- Reduce emissions from deforestation and degradation

#### Objective

 To quantify how different silvicultural scenarios affect the C balance of plantation pine forests in northern FL, a region representative of much of the SE U.S. Coastal Plain

#### Methods

- Phenomenological model of pine plantation C balance based on eddy covariance data from ~ 15 site-years of data
- Estimates of C fluxes due to silvicultural activities, harvest, storage in wood products



## Pattern of Southern Pine Plantation Carbon Sequestration - Yearly



### Pattern of Southern Pine Plantation Carbon Sequestration - Cumulative



### Silvicultural Regimes

- 20 Year Rotation
  - NP fertilizer at age 6 yrs.
  - 100% pulpwood
- 30 Year Rotation
  - NP fertilizer at age 6 and 20 yrs.
  - 50% pulpwood, 50% chip 'n saw / sawlog
- 45 Year Rotation
  - NP fertilizer at age 6, 20 and 30 yrs.
  - Stands thinned to 70 ft<sup>2</sup> / ac of basal area
  - Final harvest at 45 yrs.
  - 50% pulpwood, 50% sawtimber at thinning;
  - 80% chip 'n saw / sawlog, 20% pulpwood at final harvest

### Carbon Costs of Silvicultural Operations

| Plantation Age<br>(years)                                                                       | Silvicultural Activity                                                                     | Carbon cost<br>(metric tons /<br>ha) |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|
| 0                                                                                               | Site preparation; raking or spot piling, aerial application of herbicide, Savannah bedding | 0.095                                |
| 1                                                                                               | Machine planting                                                                           | 0.101                                |
| 6 for pulpwood scenarios<br>6, 20, 30 for 45 yr rotation<br>scenarios                           | Helicopter fertilization, 125<br>lb/acre DAP, 385 lb/acre urea                             | 0.268                                |
| Rotation age for pulpwood scenarios  Thinning age and rotation age for 45 yr rotation scenarios | Harvest                                                                                    | 0.456                                |

### Product Conversion Efficiency and Decay Rates

| Product                   | Conversion efficiency<br>(mass of product per<br>mass of log input) | Half-life (yrs;<br>Markewitz<br>2006) | Annual<br>Decay<br>Rate<br>(1/yrs) |
|---------------------------|---------------------------------------------------------------------|---------------------------------------|------------------------------------|
| Pulpwood                  | 58% (White et al. 2007)                                             | 1                                     | 0.6931                             |
| Chip 'n Saw and<br>Sawlog | 64.5% (Spelter and Alderman 2005)                                   | 50                                    | 0.0139                             |













### 45-year rotation with thinning





### 45-year rotation with thinning





#### Summary

- Lengthened rotations increased carbon density of slash pine plantation forest
  - Increased in situ sequestration
  - Increased ex situ sequestration in solid wood
- C cost of silvicultural activities was negligible
  - 2.2 Mg/ha over entire 45-year regime, compared to average in situ carbon density of 125 Mg/ha
- Sequestration in paper was negligible

#### **Future Plans**

- Incorporating uncertainty into estimates
- Economics
- Role of non-plantation stands and prescribed fire at stand and landscape levels
- Role of landfills
  - Possibly greatly increased half-life for paper products
  - Methane emissions = 30 times more warming potential than CO<sub>2</sub>

#### Acknowledgements

- Florida Forestry Association
- NIGEC
- NICCR
- Forest Biology Research Cooperative
- IFAS Dean for Research
- SFRC